2017年12月11日

Fluentd

Fluentd 將 data source 及 backend system 分離,提供兩者之間的一個 Unified Logging Layer,可讓 developers 及 data analysts 能同時使用多種資料源,同時也解決格式錯誤的資料所造成的系統變慢或解譯錯誤的問題。

Fluentd 有三種版本,全部都是以 Apache2 License 釋出。

  1. Fluentd

    社群版本,只能用 ruby gems 安裝,沒有 init scripts,如果想要修改 Fluentd 或是做更多事情,可以用這個社群版

  2. ta-agent

    這是 Treasure Data, Inc 這家公司維護並測試的版本,可直接用 rpm/deb/dmg 套件安裝,安裝時同時安裝了一些預設設定值。如果是第一次使用 Fluentd,建議安裝 ta-agent。

  3. Fluent Bit

    Fluent Bit 是 Fluentd 的 lightweight data forwarder,用在 forward 資料給 Fluentd aggregators。可安裝在 embedded system 或是嵌入到 server 系統中。

Architecture

Fluentd 的架構圖為

由於 data inputs 及 output 透過 Fluentd 中繼資料,Fluentd 這個 Unified Logging Layer 野食作為 pluggable 架構,可不斷地增加不同的 inputoutput plugins,目前已經有超過 500+ 的 plugins。

假設有 M 種 data input,N 種 data output,pluggable 架構可讓原本複雜度 O(M*N) 的系統,變成 O(M+N) 的系統。

安裝

Download Fluentd 有列出所有安裝方式的資訊。我們選擇 Installing Fluentd Using rpm Package 安裝到 CentOS 7。

產生一個新的有 sshd 的 docker machine

docker run -d \
 -p 10022:22\
 -p 80:80\
 -p 8888:8888\
 --sysctl net.ipv6.conf.all.disable_ipv6=1\
 -e "container=docker" --privileged=true -v /sys/fs/cgroup:/sys/fs/cgroup --name fluentd centosssh /usr/sbin/init

在安裝前,Before Installing Fluentd 必須要先處理幾項系統設定。

  1. NTP

    要同步時間,確保 log 的 timestamp 是正確的

    CentOS 7 修改 timezone,校正時間

    timedatectl set-timezone Asia/Taipei
    /usr/sbin/ntpdate time.stdtime.gov.tw && /sbin/hwclock -w
  2. Max # of File Descriptors

    ulimit -n 65535

    vi /etc/security/limits.conf

    root soft nofile 65535
    root hard nofile 65535
    * soft nofile 65535
    * hard nofile 65535
  3. Network Kernel Parameters

    解決 TCP_WAIT 的問題,(如果在 docker 測試,會無法修改 kernel 參數,跳過這個步驟就好了,參考這邊的說明 對docker container進行內核參數調優

    vi /etc/sysctl.conf

    net.ipv4.tcp_tw_recycle = 1
    net.ipv4.tcp_tw_reuse = 1
    net.ipv4.ip_local_port_range = 10240 65535

    sysctl -p 或是 reboot


以 script 安裝 FluentD,daemon 名稱為 td-agent

curl -L https://toolbelt.treasuredata.com/sh/install-redhat-td-agent2.sh | sh

安裝後會增加 /etc/yum.repos.d/td.repo,以及 td-agent service

啟動 daemon

systemctl enable td-agent
systemctl status td-agent

systemctl start td-agent
/etc/init.d/td-agent start
/etc/init.d/td-agent stop
/etc/init.d/td-agent restart
/etc/init.d/td-agent status

設定檔在 /etc/td-agent/td-agent.conf 預設是由 HTTP 接收 logs 轉至 stdout /var/log/td-agent/td-agent.log

發送測試資料

curl -X POST -d 'json={"json":"message"}' http://localhost:8888/debug.test

Use Cases

  • Centralized App Logging 收集不同語言實作的 Applcation 的 Log

  • Log Management & Search 以 Fluentd + Elasticsearch 的整合替代 Splunk

  • Data Analysis 將 Log 儲存到 Hadoop 或 MongoDB,以供後續分析處理

  • Data Archiving 將 Log 儲存到 Amazon S3/Riak/GlusterFS Logs

  • Stream Processing

  • Windows Event Collection 收集 Windows Event Logs (目前 stable 版本 v0.12 還不支援 Windows,要到 v0.14 才有支援)

  • IoT Data Logger

    Cloud Data Logger by Raspberry Pi 說明可在 Raspberry Pi 整合其他 Sensor 後,透過 Fluentd 收集資料。

Life of a Fluentd event

以實例解釋 event 是如何倍 Fluentd 處理的,包含 Setup, Inputs, Filters, Matches, and Labels

使用 inhttp 及 outstdout plugins 解釋 events cycle,首先修改 /etc/td-agent/td-agent.conf

# listening for HTTP Requests
<source>
  @type http
  port 8888
  bind 0.0.0.0
</source>

# print the data arrived on each incoming request to standard output
<match test.cycle>
  @type stdout
</match>

發送兩個 curl 測試

# curl -X POST -d 'json={"json":"message"}' http://localhost:8888/debug.test

# curl -i -X POST -d 'json={"action":"login","user":2}' http://localhost:8888/test.cycle
HTTP/1.1 200 OK
Content-type: text/plain
Connection: Keep-Alive
Content-length: 0

tail -f /var/log/td-agent/td-agent.log

2017-10-31 15:15:40 +0800 [info]: adding match pattern="test.cycle" type="stdout"
2017-10-31 15:15:40 +0800 [info]: adding source type="http"
2017-10-31 15:15:40 +0800 [info]: using configuration file: <ROOT>
  <source>
    @type http
    port 8888
    bind 0.0.0.0
  </source>
  <match test.cycle>
    @type stdout
  </match>
</ROOT>
2017-10-31 15:15:48 +0800 [warn]: no patterns matched tag="debug.test"
2017-10-31 15:15:58 +0800 test.cycle: {"action":"login","user":2}
Event structure

Fluentd event 包含 tag, time, record 三個部分

  • tag: event 來自哪裡
  • time: Epoch time,event 發生時間
  • record: log content,JSON object

以 apache log 為例,利用 in_tail 會由一行一行的 text line log 產生 event

192.168.0.1 - - [28/Feb/2013:12:00:00 +0900] "GET / HTTP/1.1" 200 777

tag: apache.access # set by configuration
time: 1362020400   # 28/Feb/2013:12:00:00 +0900
record: {"user":"-","method":"GET","code":200,"size":777,"host":"192.168.0.1","path":"/"}

tag 是由 a.b.c 這樣的字串組成的,用 "." 組合不同部分的字串

設定檔 td-agent.conf

  • source: input source

標準 input 有兩個: http 及 forward,可同時使用

http 將 fluentd 轉變為 HTTP endpoint,由 HTTP 接收 event message

forward 將 fluentd 轉變為 TCP endpoint,接收 TCP packets

ex:

# Receive events from 24224/tcp
# This is used by log forwarding and the fluent-cat command
<source>
  @type forward
  port 24224
</source>

# http://this.host:8888/myapp.access?json={"event":"data"}
<source>
  @type http
  port 8888
</source>
  • match: output destination

比對 event 的 tag,並處理符合定義 tag 的 event

fluentd 的 stdout output plugin 為 file 及 forward

ex:

# Match events tagged with "myapp.access" and
# store them to /var/log/fluent/access.%Y-%m-%d
# Of course, you can control how you partition your data
# with the time_slice_format option.
<match myapp.access>
  @type file
  path /var/log/fluent/access
</match>

match 後面的參數有以下規則,依照在設定檔中的順序進行比對

    • matches a single tag part

    ex: a.* matches a.b a.* not match a or a.b.c

  1. ** matches zero or more tag parts

    a.** matches a, a.b and a.b.c

  2. {X,Y,Z} matches X, Y, or Z, where X, Y, and Z are match patterns

    {a,b} matches a and b a.{b,c}.* a.{b,c.**}

  3. 可用 填寫多個 patterns

    match a and b match a, a.b, a.b.c, and b.d

  • filter: 決定 event processing pipelines

Input -> filter 1 -> ... -> filter N -> Output

ex:

# http://this.host:9880/myapp.access?json={"event":"data"}
<source>
  @type http
  port 9880
</source>

<filter myapp.access>
  @type record_transformer
  <record>
    host_param "#{Socket.gethostname}"
  </record>
</filter>

<match myapp.access>
  @type file
  path /var/log/fluent/access
</match>

event 處理過程

收到 {"event":"data"}
-> 送到 record_transformer filter
-> 增加 "host_param" 欄位
-> {"event":"data","host_param":"webserver1"}
-> 送到 file output
  • system: 設定系統參數
<system>
  # equal to -qq option
  log_level error
  # equal to --without-source option
  without_source
  # suppress_repeated_stacktrace
  # emit_error_log_interval
  # suppress_config_dump
  
  # fluentd’s supervisor and worker process names
  process_name fluentd1
</system>
  • label: group output 及 filter for internal routing
<label @SYSTEM>
  <filter var.log.middleware.**>
    @type grep
    # ...
  </filter>
  <match **>
    @type s3
    # ...
  </match>
</label>
  • @include: include other files
# Include config files in the ./config.d directory
@include config.d/*.conf
Processing Events

在設定 Setup 後,Router Engine 就已經包含了幾個基本的 rules,內部會經過幾個步驟處理 Event。

  • Filters

可用來設定一個 rule,決定要不要接受這個 event

ex: filter test.cycle 放棄不處理 logout,這是用 @grep 處理的,判斷 action 的部分,有沒有 "logout" 這個字串

<source>
  @type http
  port 8888
  bind 0.0.0.0
</source>

<filter test.cycle>
  @type grep
  exclude1 action logout
</filter>

<match test.cycle>
  @type stdout
</match>

測試

# curl -i -X POST -d 'json={"action":"login","user":2}' http://localhost:8888/test.cycle
HTTP/1.1 200 OK
Content-type: text/plain
Connection: Keep-Alive
Content-length: 0

# curl -i -X POST -d 'json={"action":"logout","user":2}' http://localhost:8888/test.cycle
HTTP/1.1 200 OK
Content-type: text/plain
Connection: Keep-Alive
Content-length: 0

結果在 log 裡面只有看到 login

2017-10-31 15:50:55 +0800 test.cycle: {"action":"login","user":2}
Labels

可用來定義新的 Routing sections,且不遵循 top-bottom 的順序,類似 linked references 的行為。

ex: 在 source 增加了 @label,表示要跳到 @STAGING 處理 event,而不是用上面的 filter

<source>
  @type http
  bind 0.0.0.0
  port 8880
  @label @STAGING
</source>

<filter test.cycle>
  @type grep
  exclude1 action login
</filter>

<label @STAGING>
  <filter test.cycle>
    @type grep
    exclude1 action logout
  </filter>

  <match test.cycle>
    @type stdout
  </match>
</label>
Buffers

在範例中,使用 stdout 是 non-buffered output,但在正式環境,會需要對 output 增加 buffer,例如 forward, mongodb, s3 ...

buffered output plugins 會儲存收到的 events 到 buffers,並在達到 flush condition 時,再將資料一次寫入目標。換句話說,database 可能不會馬上看到新進的 event。

Execution unit

Fluentd events 預設是在 input plugin thread 中處理的,例如 intail -> filtergrep -> outstdout pipeline,就是在 intail 的 thread 中處理的。filtergrep 及 outstdout 並沒有自己的 thread。

但 buffered output plugin 中,另外有一個自己的 thread 可處理 flushing buffer。

Sample

Collecting Tomcat logs using Fluentd and Elasticsearch

fluentd-catch-all-config

Tomcat容器日誌收集方案fluentd+elasticsearch+kilbana

安裝 fluentd 的 elasticsearch plugin

td-agent-gem install fluent-plugin-elasticsearch

定義 tomcat catalina.out 的 source

<source>
  @type tail
  format none
  path /var/log/tomcat*/localhost_access_log.%Y-%m-%d.txt
  pos_file /var/lib/google-fluentd/pos/tomcat.pos
  read_from_head true
  tag tomcat-localhost_access_log
</source>

<source>
  @type tail
  format multiline
  # Match the date at the beginning of each entry, which can be in one of two
  # different formats.
  format_firstline /^(\w+\s\d+,\s\d+)|(\d+-\d+-\d+\s)/
  format1 /(?<message>.*)/
  path /var/log/tomcat*/catalina.out,/var/log/tomcat*/localhost.*.log
  pos_file /var/lib/google-fluentd/pos/tomcat-multiline.pos
  read_from_head true
  tag tomcat.logs
</source>

<match tomcat.logs>
    @type elasticsearch
    host localhost
    port 9200
    logstash_format true
    logstash_prefix tomcat.logs
    flush_interval 1s
</match>

References

fluentd architecture

用 ElasticSearch + FluentD 打造 Log 神器與數據分析工具


logstash + kibana - Make sense of a mountain of logs

LogStash::Inputs::Syslog 性能測試與優化


使用LogHub進行日誌實時採集

Docker日志收集新方案:fluentd-pilot

Fluentd, Logstash, LogHub, Flume, Kafka

而系統的 log,其實就是眾多的 event,我們必須設法將散落在不同地方的內部或外部 log 收集並儲存起來,集中到某個系統進行管理及分析,才能簡化處理異質環境訊息處理的問題。而 Fluentd, Logstash, LogHub, Flume, Kafka 這些技術,是以不同的方式解決問題。

在營運網路服務時,可能會遇到下面這些問題

  1. 在不同的廣告通路上,取得的使用者,要評估不同的廣告得到的收益結果
  2. 使用者抱怨服務的速度太慢,但要分析是在哪一個部分出問題
  3. 發送優惠券時,要如何評估優惠券的效益
  4. 要分析什麼時候該儲備多一點貨品,或是要調配更多人力
  5. 客戶在使用過程中發生問題,要如何分析是在哪個步驟出錯

由於網路服務的系統,可能會有這些特性,連帶造成使用者在處理某個工作時,必須跨越多種異質環境。

  1. 多個促銷或銷售管道
  2. 多個使用介面,如網頁、手機或是 APP
  3. 多台雲端機器
  4. 多種開發程式語言或環境
  5. 多個作業系統平台

通常會將 Fluentd, Logstash, LogHub 在一起比較,而將 Flume, Kafka 一起比較。

LogHub 是阿里雲的 Log Service,在別的環境中,可以先不考慮這個方案。

Fluentd, Logstash 是用 ruby,而 Flume 及 Kafka 是 Java。

Fluentd 有個基本的限制,他並不保證訊息一定會被傳送,如果不能容忍訊息遺失的狀況,就不要考慮 Fluentd。

但 Logstash 及 Flume,為了保證訊息一定會被傳遞,
同樣的訊息可能會收到兩次以上。

Flume 是訊息收集系統,而 Kafka 更接近於訊息cache系統,他可以儲存一定時間內的資訊。因此可以看到很多是採用 Fluentd + Kafka + Storm/ElasticSearch 這樣混搭使用狀況。

至於 Logstash 跟 Flume 的比較,可以看 logstash vs flume 以及 請對logstash與flume做比較 這篇文章。

Logstash 重視資料的預處理,多個 input 會把資料匯總到 input 和 filter 之間的 buffer中。filter則會從buffer中讀取數據,進行過濾解析,然後儲存在 filter 和 output 之間的Buffer中。當 buffer 滿足一定的條件時,會觸發output的刷新。

而 Flume 比較重視資料的傳輸,只有封裝 event 然後就傳送,沒有資料解析處理的部份,傳輸時比較重視資料的可靠性。

References

Fluentd vs. Logstash: A Comparison of Log Collectors

日誌客戶端(Logstash,Fluentd, Logtail)橫評

深度解讀:為何要使用日誌服務LogHub替換Kafka?

公網數據採集比較(LOGHUB VS 前端機+KAFKA)

Flume和Logstash的那些事兒

日誌採集系統flume和kafka有什麼區別及聯繫,它們分別在什麼時候使用,什麼時候又可以結合?

Kafka 與 Flume的區別

Logging 日誌記錄最佳實踐

你一定需要 六款大數據採集平台的架構分析

深夜實堂:從業務需求淺談 Log aggregators

2017年12月4日

statsd

statsd 是 Graphite/Carbon metrics server 的 front-end proxy,最初由 Etsy's Erik Kastner 以 Node.js 撰寫,目前已經有多種程式語言的實作版本。他是一個 event counter/aggregation service,接收 event timeings,做基本計算後,就產生 values,這可用來收集 custom application metrics,而 application 只需要不斷地發送 events。

collectd 在 5.4 版後就支援了 statsd plugin,也就是將 statsd 嵌入了 collectd。

statsd 是一個 UDP (也可換成 TCP) daemon,根據簡單的協議收集statsd客戶端發送來的數據,聚合統計之後,再定時推送給後端,如graphite和influxdb等,然後透過grafana顯示資料。

系統分成三個部分: client, server, backend。client 要植入 application 中,將相應的 metrics 發送給 statsd server。statsd server 聚合這些 metrics 後,定時發送給 backends。backends 負責儲存這些 Time Series Data,再透過適當的圖表工具展示資料。

安裝

要先安裝 nodejs,由 EPEL 安裝的是 nodejs 6.11.3-1.el7 版

yum install -y epel-release
yum install -y nodejs

如果要改安裝 nodejs 7,必須改用下面的程序

# Install Node.js 7.x repository
curl -sL https://rpm.nodesource.com/setup_7.x | bash -

# Install Node.js and npm
yum install nodejs

直接由 statsd github clone 並安裝 statsd

cd /usr/local/src

git clone https://github.com/etsy/statsd.git

cd statsd

npm install

設定

首先複製一份設定檔

cp exampleConfig.js config.js

修改 graphite 的設定

vi config.js

{
  graphitePort: 2003, 
  graphiteHost: "localhost",
  port: 8125,
  backends: [ "./backends/graphite" ]
}

修改 graphite 的設定

vi /opt/graphite/conf/storage-schemas.conf

[carbon]
pattern = ^carbon\.
retentions = 60:90d

[stats]
pattern = ^stats.*
retentions = 10s:6h,10m:7d,1d:5y

[stats_counts]
pattern = ^stats_counts.*
retentions = 10s:6h,10m:7d,1d:5y

[collectd]
pattern = ^collectd.*
retentions = 10s:6h,10m:7d,1d:5y

[default_1min_for_1day]
pattern = .*
retentions = 60s:1d

10s:6h,10m:7d,1d:5y

  • 6 hours of 10 seconds data
  • 7 days of 10 mins data
  • 5 years of 1 day data

如果 retentions 時間設定為這樣,資料會更多一些

[carbon]
pattern = ^carbon\.
retentions = 60:90d

[stats]
pattern = ^stats.*
retentions = 10s:1d,30s:7d,1m:30d,15m:5y

[stats_counts]
pattern = ^stats_counts.*
retentions = 10s:1d,30s:7d,1m:30d,15m:5y

[collectd]
pattern = ^collectd.*
retentions = 10s:1d,30s:7d,1m:30d,15m:5y

[default_1min_for_1day]
pattern = .*
retentions = 60s:1d

10s:1d,30s:7d,1m:30d,15m:5y

  • 1 day of 10 seconds data
  • 7 days of 30 seconds data
  • 30 days of 1 minute data
  • 5 years of 15 minutes data

必須要同時修改 /opt/graphite/storage/whisper 路徑的 *.wsp 資料,可參考Whisper Scripts 文件。

# 修改 wsp size
find /opt/graphite/storage/whisper/collectd -type f -name '*.wsp' -exec whisper-resize.py --nobackup {} 10s:6h 10m:7d 1d:5y \;

# 列印 wsp file size
find /opt/graphite/storage/whisper/collectd -type f -name '*.wsp' -exec whisper-info.py {} \;

vim /opt/graphite/conf/storage-aggregation.conf

[lower]
pattern = \.lower$
xFilesFactor = 0.1
aggregationMethod = min

[min]
pattern = \.min$
xFilesFactor = 0.1
aggregationMethod = min

[upper]
pattern = \.upper(_\d+)?$
xFilesFactor = 0.1
aggregationMethod = max

[max]
pattern = \.max$
xFilesFactor = 0.1
aggregationMethod = max

[sum]
pattern = \.sum$
xFilesFactor = 0
aggregationMethod = sum

[gauges]
pattern = ^.*\.gauges\..*
xFilesFactor = 0
aggregationMethod = last

[count]
pattern = \.count$
xFilesFactor = 0
aggregationMethod = sum

[count_legacy]
pattern = ^stats_counts.*
xFilesFactor = 0
aggregationMethod = sum

[default_average]
pattern = .*
xFilesFactor = 0.3
aggregationMethod = average
  • 以 .lower .min 或 .upper .max 結尾的 metrics,只會儲存 max, min values,如果少於 10% datapoints,就只會儲存 None

  • 以 count 或 sum 結尾的 metrics,還有在 'stats_counts' 下面的 metrics,會加總所有 values,如果沒有收到資料,會儲存 None

  • 其他資料庫,會計算平均值,如果少於 30% 的 datapoint,就會儲存 None

重新啟動 graphite

systemctl restart carbon
systemctl restart graphite

啟動

有三種方式

  1. 直接在 console 啟動

    cd /usr/local/src/statsd
    node ./stats.js ./config.js
  2. 以 system service 方式啟動

    vi /usr/lib/systemd/system/statsd.service

    [Unit]
    Description=statsd daemon
    
    [Service]
    ExecStart=/usr/bin/node /usr/local/src/statsd/stats.js /usr/local/src/statsd/config.js
    ExecReload=/bin/kill -HUP $MAINPID
    KillMode=process
    
    [Install]
    WantedBy=multi-user.target

    啟動服務

    systemctl daemon-reload
    systemctl enable statsd
    systemctl start statsd
  3. 透過 npm forever-service 安裝服務

    cd /usr/local/src/statsd
    sudo npm install -g forever
    sudo npm install -g forever-service
    sudo forever-service install statsd -s stats.js -o " config.js"
    sudo service statsd start

statsd 會在 UDP:8125 運作,可檢查

netstat -nap | grep 8125

graphite 中會看到這些 metrics

stats.gauges.statsd.timestamp_lag

stats.statsd.graphiteStats.calculationtime
stats.statsd.graphiteStats.flush_length
stats.statsd.graphiteStats.flush_time
stats.statsd.graphiteStats.last_exception
stats.statsd.graphiteStats.last_flush

stats.statsd.bad_line_seen
stats.statsd.metrics_received
stats.statsd.packets_received
stats.statsd.processing_time

stats_counts.statsd.bad_line_seen
stats_counts.statsd.metrics_received
stats_counts.statsd.packets_received

statsd.numStats

Key Concepts

  • buckets 每一個 stat 都有自己的 bucket,不需要預先定義,最後將會被轉換到 graphite,periods ( . ) 會被換成 folders

  • values 每個 stat 都有自己的 value,解譯方式由 modifier 決定,values 一般都是 integer

  • flush 在 flush interval timeout (config.flushInterval 定義,預設值為 10 秒)後,stats 會被 aggregted 並發送到一個 backend service

使用

stats 是使用最基本的 line protocol

<metricname>:<value> | <type>

可用 nc 測試

echo "foo:1|c" | nc -u 127.0.0.1 8125

graphite 會增加這些 metrics

stats.foo
stats_counts.foo

Metric Types

Metric Types

  • Counting
foo:1|c

把 foo 加 1,flush 後,count 會發送到後端,並 reset 為 0。

如果設定了 config.deleteCounters,在 flush 時,如果 count 是 0,就不會發送 metric 到後端

如果你使用 flush interval(10秒),並在每個間隔通過某個計數器給 statsd 傳送7次 counting。則計時器的 value (stats_counts.foo) 為 7,而 per-second value (stats.foo) 為 0.7,另外 numStats 為 7。

  • Sampling
foo:1|c|@0.1

最後面 @0.1,表示每 1/10 的時間間隔,都會發送一次 counter

  • Timing

用來記錄某個 operation 消耗多少時間

foo:320|ms

foo 要花 320ms 完成

statsd 會自動計算該 flush interval 內的 percetiles, average(mean), 標準差, sum, 上下界

在 flush interval 內,你將下列計數器 values 傳給 statsd

450
120
553
994
334
844
675
496

會計算下面的 values,並傳送給 graphite

mean_90 496
upper_90 844
sum_90 3472
upper 994
lower 120
count 8
sum 4466
mean 558.25
  • Gauges

一個被記錄的任意數值

gaugor:333|g

如果 flush 時,值沒有改變,就會再發送一次。設定 config.deleteGauges,就不會再發送一次。

在數值前面加上 + 或 -,是值的計算,而不是覆寫,這表示不能將 gauge 設定為負整數

gaugor:333|g
gaugor:-10|g
gaugor:+4|g

gaugor 結果為 333 - 10 + 4 = 327

  • Sets

在 flushes 之間,記錄發生的 events,但不重複,可用來記錄某個事件在時間區段中,有哪些使用者曾經使用過

request:1|s  // 1
request:2|s  // 1 2
request:1|s  // 1 2
  • Multi-Metric Packets

可以在一行 packet 中,以 \n 區隔多個欄位的資料。但要注意網路單一 packet 的傳輸長度上限,例如 Fast Ethernet 為 1432 (包含)。

gorets:1|c\nglork:320|ms\ngaugor:333|g\nuniques:765|s

將 statsd 整合到 collectd

雖然會減少一個 daemon,改用 collectd 同時啟動 statsd,但目前不採用這種安裝方式

修改 /etc/collectd.conf

LoadPlugin statsd

<Plugin statsd>
  Host "0.0.0.0"
  Port "8125"
#  DeleteCounters true
#  DeleteTimers   false
#  DeleteGauges   false
  DeleteSets     true
  CounterSum     true
  TimerPercentile 90.0
#  TimerPercentile 95.0
#  TimerPercentile 99.0
  TimerLower     true
#  TimerUpper     false
#  TimerSum       false
#  TimerCount     false
</Plugin>

restart collectd

systemctl restart collectd

statsd 會在 UDP:8125 運作,可用 netstat 檢查,但卻是由 collectd process 處理的

netstat -nap | grep 8125

如果用 nc 測試時

echo "foo:1|c" | nc -u 127.0.0.1 8125

會在 graphite 發現,metrics 是在 collectd 下面

collectd.testserver.statsd.count-foo
collectd.testserver.statsd.derive-foo

clients

StatsD Example Clients 這裡有多種程式語言的獨立的測試 Client

3rd Party Client Implementations 這裡有第三方 StatsD 的 Library

node-statsd 為例。

安裝 node-statsd libray

npm install -g node-statsd

撰寫測試程式,發送 api 回應時間,到 statsd 的 timeing

vi test.js

'use strict';

const StatsD = require('node-statsd'),
client = new StatsD({
  host: 'localhost',
  port: 8125
});

setInterval(function () {
  const responseTime = Math.floor(Math.random() * 100);
  client.timing('api', responseTime, function (error, bytes) {
    if (error) {
      console.error(error);
    } else {
      console.log(`Successfully sent ${bytes} bytes, responseTime: ${responseTime}`);
    }
  });
}, 1000);

執行測試程式

export NODE_PATH=/usr/lib/node_modules
node test.js

在 graphite 中可以取得 stats.timers.api.* 這些 metrics

References

StatsD wiki

statsd學習小結

StatsD!次世代系統監控的核心

使用 Statsd + Graphite 的 Monitoring 心得

聊聊 Statsd 和 Collectd 那點事!

StatsD vs collectd vs fluentd and Other Daemons You Should Know 2016/8

How do StatsD and CollectD relate?

StatsD embedded into CollectD

如何深入理解 StatsD 與 Graphite

使用 StatsD + Grafana + InfluxDB 搭建 Node.js 監控系統


How to install Node.js 7.x on Ubuntu/Debian and CentOS